Maximum likelihood estimation of Gaussian copula models for geostatistical count data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood estimation of skew t-copula

We construct a copula from the multivariate skew t-distribution of Azzalini and Capitanio (2003). This copula can capture asymmetric and extreme dependence between variables, and it is one of the few that is effective when the number of dimensions is high. However, two problems arise when estimating the parameters by maximum likelihood estimation. Here, we solve these problems and provide a con...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

Maximum likelihood estimation of Gaussian mixture models using stochastic search

Gaussian mixture models (GMM), commonly used in pattern recognition and machine learning, provide a flexible probabilistic model for the data. The conventional expectation–maximization (EM) algorithm for the maximum likelihood estimation of the parameters of GMMs is very sensitive to initialization and easily gets trapped in local maxima. Stochastic search algorithms have been popular alternati...

متن کامل

Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models

Analyzing multi-layered graphical models provides insight into understanding the conditional relationships among nodes within layers after adjusting for and quantifying the effects of nodes from other layers. We obtain the penalized maximum likelihood estimator for Gaussian multi-layered graphical models, based on a computational approach involving screening of variables, iterative estimation o...

متن کامل

Geometry of Maximum Likelihood Estimation in Gaussian Graphical Models By

We study maximum likelihood estimation in Gaussian graphical models from a geometric point of view. An algebraic elimination criterion allows us to find exact lower bounds on the number of observations needed to ensure that the maximum likelihood estimator (MLE) exists with probability one. This is applied to bipartite graphs, grids and colored graphs. We also study the ML degree, and we presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Simulation and Computation

سال: 2019

ISSN: 0361-0918,1532-4141

DOI: 10.1080/03610918.2018.1508705